An Overview of Data-Driven Part-of-Speech Tagging

نویسنده

  • Dan TUFIŞ
چکیده

Over the last twenty years or so, the approaches to partof-speech tagging based on machine learning techniques have been developed or ported to provide high-accuracy morpho-lexical annotation for an increasing number of languages. Given the large number of morpho-lexical descriptors for a morphologically complex language, one has to consider ways to avoid the data sparseness threat in standard statistical tagging, yet to ensure that the full lexicon information is available for each wordform in the output. The paper overviews some of the major approaches to part-of-speech tagging and touches upon the tagset design, which is of crucial importance for the accuracy of the process. Key-words: ambiguity class, data sparseness, lexical ambiguity, machine learning, multilinguality, part-of-speech tagging, tagset design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

برچسب‌گذاری ادات سخن زبان فارسی با استفاده از مدل شبکۀ فازی

Part of speech tagging (POS tagging) is an ongoing research in natural language processing (NLP) applications. The process of classifying words into their parts of speech and labeling them accordingly is known as part-of-speech tagging, POS-tagging, or simply tagging. Parts of speech are also known as word classes or lexical categories. The purpose of POS tagging is determining the grammatical ...

متن کامل

سیستم برچسب گذاری اجزای واژگانی کلام در زبان فارسی

Abstract: Part-Of-Speech (POS) tagging is essential work for many models and methods in other areas in natural language processing such as machine translation, spell checker, text-to-speech, automatic speech recognition, etc. So far, high accurate POS taggers have been created in many languages. In this paper, we focus on POS tagging in the Persian language. Because of problems in Persian POS t...

متن کامل

Data-Driven Part-of-Speech Tagging of Kiswahili

In this paper we present experiments with data-driven part-of-speech taggers trained and evaluated on the annotated Helsinki Corpus of Swahili. Using four of the current state-of-the-art data-driven taggers, TnT, MBT, SVMTool and MXPOST, we observe the latter as being the most accurate tagger for the Kiswahili dataset.We further improve on the performance of the individual taggers by combining ...

متن کامل

Icelandic Data Driven Part of Speech Tagging

Data driven POS tagging has achieved good performance for English, but can still lag behind linguistic rule based taggers for morphologically complex languages, such as Icelandic. We extend a statistical tagger to handle fine grained tagsets and improve over the best Icelandic POS tagger. Additionally, we develop a case tagger for non-local case and gender decisions. An error analysis of our sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016